
COMP551-McGill University miniProject3

Kianoosh Ojand-260894514, Dara Shahriari-260715981, Negar Hassantabar-260939318

November 2019

Abstract–MNIST is a database of handwritten
data. In this work, our goal was to train a ma-
chine learning model on monochrome images contain-
ing handwritten digits from MNIST database on a
background of different shapes of curves, lines, and
dots. They came paired with their respective classes,
the largest digit in each image. To reach this goal,
we converted the feature vectors of the image data to
numerical features and trained several classifiers on
deep neural network and convolutional neural net-
work models. Our best result was obtained using
ResNet (Residual neural network) with an accuracy
of 96.9%.

1 INTRODUCTION
In this work the main task was to design a machine
learning model to predict the maximum digit in the
images. Our dataset consisted of 50000 images with
different backgrounds. For the prepossessing part, we
vectorized, normalized, and centred the image data.
In the next step we implemented different neural net-
work algorithms. We examined a simple convolu-
tional Network, a deep convolutional network, and
a ResNet structure, obtaining the accuracy rate of
79%, 95.1% and 96.9%. Although the validation ac-
curacy in our algorithms was increasing, the rate was
so low that an improvement was not possible for hours
of extra runtime. In the following sections, we pro-
vide a brief background of the related research in this
area and explain the pre-processing in detail. In the
section 3, we explain the implemented algorithm in
more detail. Finally, in section 5 and 6 we provide
the results and conclude.

2 RELATED WORKS
Handwritten digit recognition is of great importance
in the realm of machine learning. It is used in many
applications such as bank cheque analysis, post mail
sorting and handwritten form processing. There are
many algorithms written to classify digits with low
computational costs [1]. Due to their distinguishing

ability, fast training, and fast classification time neu-
ral networks are generally used for this type of classi-
fication problem [2]. When considering what type
of neural network to use, based on the criteria of
accuracy, training time, memory requirements, etc.,
the convolutional neural network (CNN) is the clear
choice.

The Convolutional neural network (CNN) works
properly because of its high capability to learn shapes
with varying size [3]. The ability of the CNN’s gen-
eralization highly depends on the architecture of its
network. There are three kinds of layers which can
be used in a convolutional neural network: “convo-
lution, pooling, and fully connected layers”. Fully
connected neural networks usually have so many pa-
rameters that a restriction criteria is required for the
connecting layers to reduce computational costs and
avoid over fitting [4, 5]. In addition, the depth of
a neural network is generally results in better per-
formance. However, the vanishing gradient problem
makes it difficult to train a deep network. In ResNet,
the problem is solved by adding shortcut connections
with identity functions to the network[6]. Thus, with
such structures we are able to train deeper network
because the gradient is preserved with the identity
function through the network layers [7].

3 DATASET AND SETUP
Our data set for this project is a modified version of
the original MNIST database. Each of the images
in our modified dataset contain three digits 0-9 over
varying backgrounds. The images are encoded as a
list of rows where each index represents a gray scale
intensity. These images are serialized as a file of ob-
jects that can only be reconstructed by pickling.

Before this data is fed to a neural network, the
data needs to be pre-processed. Pre-processing con-
sisted of 3 steps: flattening the rows of each image
into a single list of pixels, reshaping the dimensions
of the images to work with a CNN, and vectorizing



Figure 1: Visualization of the data

the y input values.

4 PROPOSED APPROACH

4.1 Simple CNN with No Validation
Our first model was not successful and suffered from
heavy over fitting. We used a very basic 5 layer CNN
with little no data augmentation, meaning that the
model’s learning was specific only to the training set.
We also had not split the train data into a validation
set, thus after 30 or so epochs our train accuracy
was close to 0.99. Testing on a validation set soon
revealed that this accuracy was heavily inflated, and
that our real accuracy was closer to 0.11.

4.2 Simple 2-layer CNN
In this model, we used a very simple convolutional
neural network that reads single channel images (128
x 128). The model had 2 convolutional layers with
a kernel size of 5 and a Maxpool layer. The output
of the convolutional part of the model is sent to a
fully connected neural network which has one hidden
layer. In this part of the work, we added a dropout
to the network in order to let it learn more impor-
tant features and avoid overfitting. The activation
function used in this model is Relu and log_soft was
applied to output. For the optimizer, we used op-
tim.SGD and for the loss function we used nll_loss.
It’s worth mentioning that we tried out different op-
timizers and loss functions for this topology but the
above mentioned structure gave us the best result:
80% on validation. This model was developed by Py-
torch in google Colab.

4.3 Six hidden deep CNN
In this model, we created 6 hidden layer CNN, con-
taining a layer of Convolution using the Relu acti-

vation function. This model also had Poolmax and
Dropout layers, which we used to avoid overfitting,
in addition to a dense layer using the Softmax acti-
vation function. In our model, we used Adam as the
optimizer and Categorical Crossentropy as the loss
function. We split our data into two sets, 40,000 for
the train data and 10,000 for the validation set.

4.4 ResNet
One of the approaches we took in this project was
adopting some famous image classification models like
VGGNet, ResNet, AlexNet, etc. ResNet, based on
the original network developed by Kaiming He[6],
became our main focus. Also, for the part related
to the defining a Resnet Class, we used an existing
work[8]. In this approach, firstly, we read the raw
data.Then by using train_test_split in sklearn li-
brary we split the training data into training and val-
idation. We then normalized the data by dividing by
255. Finally we pass the processed data to ResNet in
order to do the classification. It’s worth mentioning
that the original ResNet was developed for 224 x 224
size pictures. In our case, the pictures were 128 x
128. We were posed with two approaches. One was
to change characteristics of different layers of ResNet
in order to make it fit our images size, which was
difficult for us to do. So we tried a simpler method:
we changed the dimensions of our input images by
using the F.upsample() function, importing "import
torch.nn.functional as F" to our python code. The
goal here is to move from 128 x 128 to 224 x 224.
Re-scaling all images at once was not possible for our
hardware. So instead of reshaping the data set all at
once, we made our train_loader and val_loader
using original size images. Then, through trial and
error, we realized that it was better to resize the in-
put data in each batch right before sending them to
training or validation process. This model was devel-
oped using the google colab service and developed in
Pytorch.

5 RESULTS
In this section we will propose our results based on
our proposed models. It should be mentioned that
we got best results from Resnet and after it from Six
Hidden Deep CNN.

5.1 Resnet results
For this model we used the following settings shown
in Table 1



Table 1: ResNet settings

Parameters numerical values
Learning Rate 0.06

Maximum number of epochs 40
Momentum default value
Batch size 64
Optimizer Optim.SGD

Loss Function CrossEntropyLoss

According to the setting in Table 1 we obtained
results shown in Table 2. For this method, we used

Table 2: ResNet Results

Parameters numerical values
Max num of epochs 40

training loss 8.24e-05
validation loss 0.194

each epoch duration 79.53s
running time in total 3181.47s
padding and filtering default values

Adadelta optimizer and we got 0.958 for accuracy in
the Kaggle then we changed it to SGD with learn-
ing rate of 0.06 and we got a better result is 0.969.
We should mention that for this method we tried the
model without normalization of the photos but the
results were worse so we decided to normalize them
for better results. In addition, we tried to normalize
the data by subtracting from min value and dividing
by maximum value, but results didn’t change a lot
from the current normalization technique.

Figure 2 shows the loss function behaviour of train-
ing and validation loops in this model and we can see
that till the last epoch, both of them are decreasing
and it means that model is not suffering over-fitting.

Figure 2: Training loss vs Validation loss

5.2 Simple 2 layer convoultional model
results

This was the first model that we developed and it
gave us our first result in Kaggle, it consist of two
convolutional layers with kernel size of 5 for each of
them and two poolmax filters with kernel size of 5
for each convolutional layer. For this model we used
original single channel images with size of 128 x 128.
For this model we used the setting shown in table 3
Table 3: simple 2 layer convolutional model settings

Parameters numerical values
Learning Rate 0.03

Maximum number of epochs 24
Momentum 0.4
Batch size 64

Loss Function F.nll_loss
Optimizer optim.SGD

Based on the settings in Table 3 we obtained the
results shown in Table 4. For this method we tried
Table 4: Simple 2 layer Convolutional model Results

Parameters numerical values
mean Training loss 0.824
Validation loss 0.6599

validation accuracy 79%
each epoch duration 30.15s
total training time 723.75

padding and filtering nothing was added

CrossEntropy loss function but it was not giving good
results. We tried using F.nll_loss function and we
got the best accuracy for this model. In this model
setting Momentum helped a lot to reach convergence
point.

5.3 Six Hidden Deep CNN
For this model we used normalization as preprocess-
ing section and use setting that shown in table 5.
Table 5: 6 hidden deep convolutional neural network
setting

Parameters numerical values
Learning Rate 0.0008

Max number of epochs 200
Momentum Default Value
Batch size 100

Loss Function CategoricalCrossentropy
Optimizer Adam

The obtained result shown in table 6.



Table 6: 6 hidden deep convolutional neural network
result

Parameters numerical values
Training loss 0.1067
Validation loss 0.1916

validation accuracy 95.49%
each epoch duration 53s
total training time 10600s

padding and filtering Same and default value

We tried different learning rates, batch sizes, and
filtering sizes but the optimum solution based on val-
idation accuracy is shown in table 5.

As we can see in Figure 3 both validation and
training accuracy increase, so we can assume that
the model is not over-fitting on our train data.

Figure 3: Training vs Validation accuracy

6 CONCLUSION
In this project, we tried using data augmentation on
some of our models, but it was not helpful. The lack
of improvement may have been attributed to our orig-
inal data having numbers with different angles and
positioning. A case where this was especially notice-
able was when the model had to differentiate between
6 and 9.

As shown in our results, we learned that choosing
an optimizer and loss function without ample testing
was not a good idea. We also learned that using
momentum can be very useful in reaching high levels
of accuracy, all while using less epoch iterations. It

is worth noting, however, that the use of momentum
raises the likely-hood of the model not converging.

We tried implementing VGGNet and Alexnet from
existing models on the internet, but, unfortunately,
we couldn’t find a good implementation that yielded
sufficient results. Because we were able to find a good
implementation, we decided to stick with Resnet [8].
While implementing Resnet, we realized that we had
two choices. One was to go deep inside Resnet’s code
and change its characteristics, including padding, ker-
nel size, and stride, etc. This was a risky decision
because it requires full knowledge of the model’s in-
ner workings. The other option was to restructure the
format of the images to ensure compatibility with the
model. We opted with the latter. In this project, we
tried Resnet18, Resnet34, Resnet50,Resnet101 and
Resnet152, with Resnet18 providing us the best re-
sult. We realized that higher complexity doesn’t al-
ways correlate with better results. In fact, our results
depended primarily on the distribution of our data,
and the only way we were able to understand which
model was superior was via examination.

7 STATEMENT OF CONTRI-
BUTIONS

Kianoosh developed Resnet model and Simple 2 layer
convolutional model and helped in writting the re-
port, Negar developed 6 hidden deep convolutional
neural network and helped in writting the report.
Dara developed two models but unfortunately his mod-
els didn’t have good accuracy so we didn’t include
them in the report and also he helped in writting the
report and final editing.

References
[1] Vineet Singh and Sunil Pranit Lal. Digit recogni-

tion using single layer neural network with prin-
cipal component analysis. In Asia-Pacific World
Congress on Computer Science and Engineering,
pages 1–7. IEEE, 2014.

[2] Dejan Gorgevik and Dusan Cakmakov. An effi-
cient three-stage classifier for handwritten digit
recognition. In Proceedings of the 17th Interna-
tional Conference on Pattern Recognition, 2004.
ICPR 2004., volume 4, pages 507–510. IEEE,
2004.

[3] Yann LeCun, LD Jackel, Leon Bottou, A Brunot,
Corinna Cortes, JS Denker, Harris Drucker,
I Guyon, UA Muller, Eduard Sackinger, et al.



Comparison of learning algorithms for handwrit-
ten digit recognition. In International conference
on artificial neural networks, volume 60, pages
53–60. Perth, Australia, 1995.

[4] Yann LeCun, Bernhard E Boser, John S Denker,
Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwrit-
ten digit recognition with a back-propagation net-
work. In Advances in neural information process-
ing systems, pages 396–404, 1990.

[5] Sajid Anwar, Kyuyeon Hwang, and Wonyong
Sung. Fixed point optimization of deep convolu-
tional neural networks for object recognition. In
2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
pages 1131–1135. IEEE, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
770–778, 2016.

[7] Zhuxin Chen, Zhifeng Xie, Weibin Zhang, and
Xiangmin Xu. Resnet and model fusion for au-
tomatic spoofing detection. In INTERSPEECH,
pages 102–106, 2017.

[8] Francesco Zuppichini. Residual network: Imple-
menting resnet, Jul 2019.


